8 research outputs found

    MEMS suljenta kuparin lÀmpöpuristusliitÀnnÀllÀ

    Get PDF
    Copper thermocompression is a promising wafer-level packaging technique, as it allows the bonding of electric contacts simultaneously to hermetic encapsulation. In thermocompression bonding the bond is formed by diffusion of atoms from one bond interface to another. The diffusion is inhibited by barrier forming surface oxide, high surface roughness and low temperature. Aim of this study was to establish a wafer-level packaging process for MEMS (Mi-croElectroMechanical System) mirror and MEMS gyroscope. The cap wafer of the MEMS mirror has an antireflective coating that limits the thermal budget of the bonding process to 250°C. This temperature is below the eutectic temperature of most common eutectic bonding materials, such as Au-Sn (278°C), Au-Ge (361°C) and Au-Si (370°C). Thus a thermocompression bonding method needed to be developed. Copper was used as a bonding material due to its low cost, high self-diffusivity and resistance to oxidation in ambient air. The bond structures were fabricated using three different methods and the bonding was further enhanced by annealing. The bonded structures were characterized with scanning acoustic microscopy, scanning electron microscope and the bond strength was determined by shear testing. Exposing the bond structures to etchant during Cu seed layer removal was found to drastically increase the surface roughness of bond structures. This increase proved detrimental to bond strength and dicing yield and thus covering the bond surface during wet etching is recommended. The native oxidation on copper surfaces was completely removed with combination of ex situ acetic acid wet etch and in situ forming gas anneal. Successful thermocompression bonding process using sputtered copper films was established at a low temperature of 200°C, well below the thermal limitation set by the antireflective coating. The established wafer bonding process had high yield of 97% after dicing. The bond strength was evaluated by maximum shear strength and recorded at 75 MPa, which is well above the MIL-STD-883E standard (METHOD 2019.5) rejection limit of 6.08 MPa.Kuparin lÀmpöpuristusliitÀntÀ on lupaava kiekkotason pakkausmenetelmÀ, sillÀ se mahdollistaa sekÀ sÀhköisten liitÀntöjen, ettÀ hermeettisen suljennan toteuttamisen samanaikaisesti. LÀmpöpuristusliitÀnnÀssÀ sidos muodostuu atomien diffuusiosta liitospinnalta toiselle. Diffuusiota rajoittavat estokerroksen muodostava pinta oksidi, korkea pinnan karheus ja matala lÀmpötila. Diplomityön tavoitteena oli luoda kiekkotason pakkausmenetelmÀ mikroelektromekaaniselle (MEMS, MicroElectroMechanical System) peilille ja MEMS gyroskoopille. Peilin lasisen kansikiekon pinnalla oleva antiheijastava kalvo rajoitti liitÀnnÀssÀ kÀytettÀvÀn lÀmpötilan korkeintaan 250°C:een, mikÀ on alempi lÀmpötila kuin useimpien kiekkoliitÀnnÀssÀ kÀytettyjen materiaaliparien eutektinen piste. EsimerkkinÀ mainittakoon mm. Au-Sn (278°C), Au-Ge (361°C) ja Au-Si (370°C). Kuparin alhainen hinta, korkea ominaisdiffuusio ja hidas hapettuminen ilmakehÀssÀ puoltavat sen valintaa liitÀntÀmateriaaliksi. LiitÀntÀrakenteet valmistettiin kolmella menetelmÀllÀ ja liitÀnnÀn vahvuutta parannettiin lÀmpökÀsittelyllÀ. Liitetyt rakenteet karakterisoitiin pyyhkÀisy elektronimikroskoopin, akustisen mikroskoopin ja liitoslujuus-mittauksen avulla. Liitospintojen altistamisen hapolle havaittiin lisÀÀvÀn pinnankarkeutta ja olevan siten haitallista liitokselle ja laskevan saantoa. Liitospintojen suojaaminen siemenkerroksen syövytyksen aikana on suotavaa. Pintaoksidi pystytÀÀn poistamaan tÀysin suorittamalla oksidin mÀrkÀetsaus jÀÀetikalla sekÀ lÀmpökÀsittely N2/H2 atmosfÀÀrissÀ. Sputteroidut kuparikalvot pystyttiin liittÀmÀÀn onnistuneesti yhteen 200°C lÀmpötilassa, mikÀ on alle anti-heijastavan pinnan asettaman lÀmpötilarajan. TÀllÀ liitÀntÀ menetelmÀllÀ saavutettiin kiekkoliitoksella yhteen liitettyjen sirujen sahauksessa korkea 97% saanto. Liitoslujuus mÀÀritettiin maksimi-leikkausvoiman avulla ja sen suuruudeksi mitattiin 75 MPa. Lujuus oli yli kymmenkertainen MIL-STD-883E standardin (METHOD 2019.5) asettamaan hylkÀysrajaan 6.08 MPa nÀhden

    Copper thermocompression for MEMS encapsulation:Master’s thesis

    No full text

    Reverse-Offset Printing of Polymer Resist Ink for Micrometer-Level Patterning of Metal and Metal-Oxide Layers

    No full text
    [Image: see text] Printed electronics has advanced during the recent decades in applications such as organic photovoltaic cells and biosensors. However, the main limiting factors preventing the more widespread use of printing in flexible electronics manufacturing are (i) the poor attainable linewidths via conventional printing methods (≫10 ÎŒm), (ii) the limited availability of printable materials (e.g., low work function metals), and (iii) the inferior performance of many printed materials when compared to vacuum-processed materials (e.g., printed vs sputtered ITO). Here, we report a printing-based, low-temperature, low-cost, and scalable patterning method that can be used to fabricate high-resolution, high-performance patterned layers with linewidths down to ∌1 ÎŒm from various materials. The method is based on sequential steps of reverse-offset printing (ROP) of a sacrificial polymer resist, vacuum deposition, and lift-off. The sharp vertical sidewalls of the ROP resist layer allow the patterning of evaporated metals (Al) and dielectrics (SiO) as well as sputtered conductive oxides (ITO), where the list is expandable also to other vacuum-deposited materials. The resulting patterned layers have sharp sidewalls, low line-edge roughness, and uniform thickness and are free from imperfections such as edge ears occurring with other printed lift-off methods. The applicability of the method is demonstrated with highly conductive Al (∌5 × 10(–8) Ωm resistivity) utilized as transparent metal mesh conductors with ∌35 Ω(□) at 85% transparent area percentage and source/drain electrodes for solution-processed metal-oxide (In(2)O(3)) thin-film transistors with ∌1 cm(2)/(Vs) mobility. Moreover, the method is expected to be compatible with other printing methods and applicable in other flexible electronics applications, such as biosensors, resistive random access memories, touch screens, displays, photonics, and metamaterials, where the selection of current printable materials falls short
    corecore